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The resonance–antiresonance behaviour of frequency response functions
(FRFs) for linear lightly damped structures is discussed. The focus is on the
significance of antiresonances in experimental structural analysis. Consideration
of the relationship between the resonance–antiresonance behaviour and structural
modification gives a physical interpretation of the phenomenon of antiresonances.
It shows that the antiresonance frequencies of measured FRFs provide useful
information on the dynamic properties of a test structure. So, from the
experimentally determined antiresonance frequencies of a structure under
arbitrary boundary conditions, it is possible to determine the resonance
frequencies of the structure under ideal boundary conditions which are impossible
to achieve in laboratory tests. The results presented serve as a basis for further
experimental research in fields such as identification, updating finite element
models, and location of structural faults.
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1. INTRODUCTION

In experimental structural analysis, frequency response functions (FRFs) play a
dominant role. They provide the engineer with important information on the
dynamic behaviour of the structure under consideration and at the same time they
serve as a reference for most parameter estimation procedures. Here special
attention is directed to the driving point FRFs where the response co-ordinate and
the excitation co-ordinate are identical.

The investigations here are confined to linear, reciprocal, mass and stiffness
controlled systems: i.e., to structures which, because of light damping and low
modal density, exhibit a pronounced resonance–antiresonance behaviour. In
reference [1] it has been explained that for such systems the driving point FRF
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plots are characterized by a successive change in the resonances and
antiresonances.

Figure 1 shows the measured driving point FRF plots for different structures:
the FRF for a simple structure (cantilever beam), and the FRF for a complex
structure (12-cylinder engine block). As can be seen there is a successive change
in the resonances and antiresonances for both structures, regardless of the
complexity of structures. If for a measured driving point FRF this change is not
pronounced, then either the measurement is erroneous or the structure cannot be
described by the assumed model.

The purpose of this paper is to direct attention to the significane of
antiresonance frequencies by using experimentally determined FRFs. It is clear
that the resonance frequencies represent mathematically the zeros of the
denominator polynomial, whereas the antiresonance frequencies are the zeros of
the numerator polynomial. From this, however, the physical explanation of the
phenomenon of antiresonances cannot be easily derived. While in dynamics of
machines the antiresonance behaviour of discrete systems has been known for a
long time by the name ‘‘vibration absorption’’, in experimental structural analysis
there have been only few works which deal with the phenomenon of
antiresonances.

In reference [2] the theoretical background of antiresonances in terms of modes
and vibratory waves has been discussed and the importance of antiresonances in
future research (health monitoring and localization of damages) has been stressed.
In addition, the experimental investigations of antiresonances and the
corresponding mode shapes of a bridge have also been described. The theoretical
and experimental results of the resonance–antiresonance behaviour of a cantilever
beam have been presented in reference [3]. It has been shown, for instance, that
the antiresonance frequencies of the beam are equal to the resonance frequencies
of the system in which a stiff restraint of displacement is added to the excitation
point.

In this paper, it will be shown what type of information can be acquired from
the antiresonance frequencies by using the driving point FRFs, and what the
importance of this information is for experimental structural analysis. The
investigations are based on the close relationship between the structural
modification and the resonance–antiresonance behaviour of elastic structures by
which it is possible to give a simple physical interpretation of the antiresonance

Figure 1. Examples of measured driving point FRFs. (a) Cantilever beam; (b) 12-cylinder engine
block.
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behaviour. Both single reference input systems and multiple reference input
systems will be discussed.

As a significant result, it will be shown that the antiresonance frequencies can
be interpreted as the resonance frequencies of the system fixed at the excitation
points in the excitation directions. Thus, from the measurements on a
freely-supported structure or on a structure without precisely defined boundary
conditions, it is possible to determine the eigenfrequencies of the structure with
precisely defined boundary conditions. The latter has been verified by experimental
investigations for a rectangular plate. The consequences of the results for
experimental research, as well as possible applications, will also be presented.

2. STRUCTURAL MODIFICATION AND RESONANCE–ANTIRESONANCE
BEHAVIOUR

2.1.  

To simplify the following theoretical considerations, undamped structures are
assumed. The experimental investigations have shown that the results obtained
from undamped structures can also be validated without restrictions for very
lightly damped structures (damping loss factor is typically less than 0·01).

2.2.   

Consider a general structure driven by a force fk (t) at a single measurement
DOF k with displacement response xl(t) at any other measurement DOF l. After
using the Fourier transforms of fk (t) and xl(t), the FRF Hlk (v) can be written
in the form

Hlk (v)=Xl(v)/Fk (v), (1)

or, after rewriting,

Xl(v)=Hlk (v)Fk (v), (2)

where Xl(v) and Fk (v) are the Fourier transforms of xl(t) and fk (t), respectively,
and v is the excitation frequency. The FRF Hlk (v) is known as the receptance.

For undamped or lightly damped structures, the magnitude of the FRF Hlk (v)
is essentially characterized by a resonance–antiresonance pattern in the frequency
domain. When comparing the FRFs for different response DOFs, one sees that
the resonance frequencies as global quantities are the same for all the FRFs,
whereas the antiresonance frequencies and their number also depend on the
response DOF. As a rule of thumb, it can be stated that by increasing the distance
between the excitation DOF and the response DOF the number of antiresonance
ranges decreases (see example reference [1]). The resonances and antiresonances
alternate continuously only for those FRFs where the excitation DOF and
response DOF coincide.

This paper deals with the problem of what supplementary information can be
obtained from the knowledge of antiresonances by using measured FRFs. To
answer this problem, use is made of the close relationship between the
resonance–antiresonance behaviour and the structural modification. To this end,
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Figure 2. Mass and stiffness modifications at excitation DOF k.

the structure is modified by adding a mass Dmk and/or a stiffness Dkkk to the
excitation point in the excitation direction (see Figure 2) and the behaviour of the
changed FRF H� lk (v) is observed. For the modified structure, one has

Xl(v)=H� lk (v)Fk (v), (3)

and for the original structure, one now obtains the equation

Xl(v)=Hlk (v)F�k (v). (4)

The reduced excitation force f�k (v) (see Figure 2) can be written as

f�k (t)= fk (t)− [Dmkẍk (t)+Dkkkxk (t)], (5)

which after using the Fourier transforms becomes

F�k (v)=Fk (v)− [−v2DmkXk (v)+DkkkXk (v)]. (6)

By substituting equation (6) into equation (4) and introducing the relations

Hlk (v)Xk (v)=
Xl(v)
F�k (v)

Xk (v)=
Xk (v)
F�k (v)

Xl(v)=Hkk (v)Xl(v), (7)

the modified FRF can be written as

H� lk (v)=
Hlk (v)

1+Hkk (v)Dbkk (v)
, (8)

where

Dbkk (v)= (−v2Dmk +Dkkk ). (9)

From the equation (8) one can derive the basic relationships between the structure
modification Dbkk (v) and the resonance–antiresonance behaviour of the structure.
It will be seen that for any modification Dbkk (v) the zeros of the modified FRF
H� lk (v) must coincide with those of the original FRF Hlk (v). Since for undamped
or lightly damped structures the zeros represent the antiresonance frequencies, the
following theorem holds true: the antiresonance frequencies of an arbitrary FRF
do not change if any mass or any stiffness is added to the structure at the excitation
point in the excitation direction.

By applying the reciprocity principle for the structure’s behaviour
(Hlk (v)=Hkl(v)), the following conclusion can be drawn: the antiresonance
frequencies of an arbitrary FRF do no change if any mass or any stiffness is added
to the structure at the response point in the response direction.
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Before considering the importance of these theorems for experimental structural
analysis, first the resonance behaviour of the modified structure must be
investigated. To do this, use is made of the driving point FRF, in which the
excitation DOF and the response DOF are the same. From equation (8) one
obtains

H� kk (v)=
Hkk (v)

1+Hkk (v)Dbkk (v)
. (10)

The resonance frequencies of the modified structure are determined from the zeros
of the denominator of equation (10), i.e. from the equation

−1/Dbkk (v)=Hkk (v). (11)

Equation (11) is derived in the reanalyses techniques of undamped structures [4]
and in the structural modification theory for desired pole shifting of damped
systems [5]. Equation (11) has a simple graphical interpretation. To simplify our
analysis, a mass modification is introduced. With equation (9) one then obtains
from equation (11)

1/Dmk =v2Hkk (v)=−Ha
kk (v). (12)

The right side of this equation is known as the accelerance (or inertance) Ha
kk (v),

which is defined as the ratio of the vibration acceleration to the excitation force
and can be directly measured. For graphical representation, it is practical to
rewrite equation (12) with the aid of a logarithmic decibel scale:

20 lgb 1
Dmk b=20 lg=Ha

kk (v)= (dB). (13)

Equation (13) describes the shifts in resonance frequencies due to an additional
mass applied at the excitation DOF of the structure. The right side of equation
(13) represents the measured driving point FRF (accelerance). The points of
intersection of the accelerance curve with the horizontal line =1/Dmk = give the
resonance frequencies of the modified structure.

Before studying the role of antiresonances in detail, one can first elucidate the
results presented thus far by using the 3-DOF vibratory structure shown in
Figure 3. The circled numbers indicate the simulated measurement DOF.

Figure 3. 3-DOF vibratory structure with four measurement DOFs.
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Figure 4. Mass modification and resonance shifts. ——, FRF Ha
11(v) for the original structure;

– – –, FRF H� a
11(v) for the modified structure; Dm1 =31·6 kg (30 dB).

Figure 4 shows the driving point FRF Ha
11(v) for the original structure and the

driving point FRF H� a
11(v) for the structure modified by the additional mass Dm1.

It can be seen that the antiresonance frequencies do not change due to the
additional mass. By virtue of equation (13), the shifts in resonance frequencies are
determined from the points of intersection of the horizontal line =1/Dm1= with the
accelerance =Ha

11(v)=. This procedure is reversible. If the mass Dm1 is removed, then
the resonances corresponding to the points of intersection with the horizontal line
=1/Dm1= will be shifted again to the right into their initial positions.

The driving point FRFs Ha
11(v) for different values of the additional mass Dm1

are shown in Figure 5. By increasing the additional mass, the resonances are
shifted to the left in the direction of the antiresonance frequencies. It is seen that
all the antiresonances are unchanged. The shifts of resonance frequencies beyond

Figure 5. FRFs H� a
11(v) with different additional masses. ——, Original; – – –, Dm1=10 kg

(20 dB); ----, Dm1 =100 kg (40 dB).
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the antiresonance frequencies are not possible. When the mass becomes infinite
(Dm1:a), the resonances ‘‘fall into the antiresonances’’. This limited case can be
interpreted physically by the fact that, when increasing the additional mass Dm1,
the nodes of the mode shapes approach the excitation point and in the limit case
they lie in the excitation point and fix the structure in the excitation direction.

Thus, the condition for determination of the resonance frequencies of a
structure, whose excitation DOF is held fixed, can be obtained from equation (12)
as

Hkk (v)=0. (14)

Since the zeros of the driving point FRF Hkk (v) provide the antiresonance
frequencies, the following conclusion can be drawn: the antiresonance frequencies
for an arbitrary driving point FRF are identical with the resonance frequencies
of the structure that is fixed at the excitation point in the excitation direction.

It is interesting to note that in reference [6], an equation is derived for calculating
the eigenfrequencies of a N-DOF system under constraint. This equation is

s
N

r=1

ar

(−v2 +v2
r )

=0, (15)

which is identical to equation (14) in the modal domain.
A further generalization of single reference input systems is possible by

considering the stiffness modification Dkkl between the two measurement DOFs
k and l with the same direction. By forming the ‘‘relative’’ driving point FRF (see
for example reference [5])

DHkl(v)=Hkk (v)−2Hkl(v)+Hll (v), (16)

the corresponding FRF for the modified structure is obtained from a formula
analogous to equation (10):

DH� kl(v)=
DHkl(v)

1+DHkl (v)Dkkl
. (17)

It can be shown that the function DHkl(v) represents the same resonance–antires-
onance behaviour as the customary driving point FRF. Therefore, the same
theorems also hold true. For these, the following apply: the antiresonance
frequencies of an arbitrary FRF DHkl(v) do not change if any stiffness
modification is made between the measurement DOFs k and l; the antiresonance
frequencies of an arbitrary FRF DHkl(v) are identical to the resonance frequencies
of the structure, in which the structure is coupled rigidly between the measurement
DOFs k and l.

Figure 6 shows the FRFs DH24(v) and DH� 24(v) for the 3-DOF vibratory
structure. The modification Dk24 shifts the resonances to the right, whereas the
antiresonances remain unaffected. The antiresonance frequencies can be
interpreted as the resonance frequencies for the structure coupled rigidly between
the measurement DOFs 2 and 4.
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Figure 6. Relative stiffness modification and resonance shifts. ——, FRF DH24(v) for the original
structure; – – –, FRF DH�24(v) with Dk24 =10 000 N/m (80 dB).

2.3.   

If the structure considered is excited at multiple excitation DOFs, the
relationships between the structure modification and the resonance–antiresonance
behaviour can be described in a similar manner as in the case of single reference
input systems. Assuming n excitation DOFs and n response DOFs, one obtains

X(v)=H(v)F(v), (18)

where F(v)(1× n) is the vector of excitation forces, X(v)(1× n) the vector of
displacements, and H(v)(n× n) the FRF matrix. Let us further assume that H(v)
is a full rank matrix.

Proceeding in the same manner as in the case of single input reference systems,
one obtains the vector of the reduced exciting forces in the form

F�(v)=F(v)−DB(v)X(v), (19)

with

DB(v)= (−v2DM+DK). (20)

Let the matrices DM and DK be diagonal matrices whose elements describe the
modifications at the n excitation DOFs. For the modified structure, one now
obtains the equation for the FRF matrix:

H�(v)= [I+H(v)DB(v)]−1H(v). (21)

Taking the eigenvalue decomposition of the FRF matrix H(v) at each spectral
line (simple eigenvalues are assumed) one has

TT(v)H(v)T(v)=L(v), (22)

where T(v) is the matrix of the orthonormalized eigenvectors and L(v) is the
diagonal eigenvalue matrix.
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If one assumes that the modifications Dbkk (v), k=1, 2, . . . , n, at all excitations
DOFs are identical to Db(v), one obtains

DB(v)=Db(v)I, (23)

and the eigenvalue decomposition of the modified FRF matrix is given by

TT(v)H� (v)T(v)=L�(v), (24)

with

L��(v)= [I+L(v)Db(v)]−1L(v). (25)

From equation (25) one obtains the rth eigenvalue as

L� r (v)=
Lr (v)

1+Lr (v)Db(v)
. (26)

By comparing equations (26) and (10), it can be seen that the same relationships
are valid for the eigenvalues of the FRF matrix H(v) as in the case of single
reference input systems. Therefore, the conclusions drawn for single reference
input systems can be validated directly for multiple reference input systems: the
antiresonance frequencies of the eigenvalues Lr (v) do not change if any mass or
any stiffness is added to the structure at all n excitation points in the corresponding
excitation directions; the antiresonance frequencies of the eigenvalues are identical
with the resonance frequencies of the structure that is fixed at all n excitation
points in the corresponding excitation directions.

Since arbitrary structural modifications at the excitation DOFs must give
identical resonance frequencies of the structure fixed at all n excitation points in
the corresponding excitation directions, the assumption (23) can be omitted and
it follows that the antiresonance frequencies of the eigenvalues Lr (v) do not
change due to arbitrary mass or stiffness modifications at k excitation points
(k=1, 2, . . . , m, mE n) in the corresponding excitation directions. This theorem
is important for testing structures because the size of the shakers and transducers
need not to be identical.

The results are elucidated in the example of the 3-DOF vibratory structure
shown in Figure 3. Let the excitation DOFs be points 1 and 3. Two identical
masses Dm are added to these points. The eigenvalues La

1 (v) and La
2 (v) of the

accelerance matrix

Ha(v)=$Ha
11(v)

Ha
31(v)

Ha
13(v)

Ha
33(v)%, (27)

as well as the eignvalues L� a
1(v) and L� a

2(v) of the modified FRF matrix H� a(v) are
shown in Figure 7. It can be seen that the resonance–antiresonance behaviour of
the eigenvalues is similar to the behaviour of the FRFs for single reference input
systems. The antiresonance frequency shown in Figure 7 is identical with the
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Figure 7. Mass modification and resonance shifts. ——, Eigenvalues La
1 (v) and La

2 (v) for the
original structure; – – –, eigenvalues L� a

1(v) and L� a
2(v) for the modified structure; Dm=10 kg (20 dB).

resonance frequency of the structure that is fixed at points 1 and 3. There remains
a single DOF system with the eigenfrequency (see Figure 3)

f=
1
2pX10000

20
Hz=3·56 Hz.

The significance of antiresonance frequencies in experimental structural analysis
can be explained by another example for a continuous system. Figure 8 shows the
plot for the eigenvalues of the accelerance matrix using the excitation points shown
(at the top of the figure). The resonance frequencies of the eigenvalues La

1 (v) and
La

2 (v) are the eigenfrequencies of the original system and the antiresonance
frequencies of the eigenvalues give eigenfrequencies of the clamped beam (at the
bottom of the figure).

Figure 8. Significance of antiresonance frequencies for the eigenvalues La
1 (v) and La

2 (v). Beam
parameters: L=1 m; raL=2 kg; EI=100 Nm2.
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Figure 9. Test structure with lay-out of the test points. Dimensions in mm.

From the properties of antiresonances presented here important conclusions can
be drawn for experimental structural analysis. By using the FRF measurements
of structures supported arbitrarily it is possible to determine the eigenfrequencies
of structures in ideal support conditions that are impossible to achieve in
laboratory tests.

3. EXPERIMENTAL RESULTS

To verify the theoretical results and the numerical examples, experimental
investigations were performed. As a test structure, a rectangular steel plate
(580×332×4·1) mm was used. The plate with the lay-out of the testpoints is
shown in Figure 9. The plate was supported by rubber cables at points 16 and 20
so that the eigenfrequencies of rigid body motions were found below the first
eigenfrequency of the elastic deformations (free–free boundary condition). For the
measurements of the FRFs and for the modal analysis, the LMS CADA-X
software was used. An impact hammer was employed as an exciter. The excitations
and the measurements of vibration accelerations were carried out normal to the
plate surface.

In the first test, the relationships between the modification and the
resonance–antiresonance behaviour presented for single reference input systems
were revised. For this purpose, the driving point FRF for the centre of the plate
(point 0) was measured in the frequency range up to 2500 Hz. To avoid rotations
of the added mass and to ensure by this a pure mass modification in the excitation
direction, the point 0 was chosen. Figure 10 shows the plots of Ha

0, 0(v) for the
original structure and H� a

0, 0(v) for the structure modified by the additional mass
Dm0. The results confirm equation (13) concerning the shifts in resonance
frequencies, and at the same time they show that the antiresonance frequencies are
not shifted due to modifications at the excitation point. The antiresonance
frequencies shown in Figure 10 can be interpreted as the eigenfrequencies of the
plate fixed at point 0.

The results for multiple reference input systems were verified with the aid of
another test. The softly suspended plate was excited at three points: 4, 11 and 19.
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The complete FRF matrix Ha(v) was measured in the frequency range up to
250 Hz. After modal identification, the complex eigenvalues of the FRF matrix
Ha(v) were calculated for each frequency line. Figure 11(a) shows the eigenvalue
curves La

1 (v), La
2 (v) and La

3 (v) of the FRF matrix.
To test the antiresonance frequencies, the plate was subsequently supported

horizontally by pointed edges at points 4, 11, and 19. The FRF Ha
1, 1(v) of the plate

supported in this manner is shown in Figure 11(b). As can be seen there is a good
agreement between the antiresonance frequencies of the eigenvalues for the
original plate and the resonance frequencies for the plate supported at the
excitation points. The frequency values are tabulated in Table 1 (columns 1 and
2). For further verification of the results, FE-calculations were carried out. The
results are shown in Table 1, column 3.

In the case of the supported plate, it was clearly not possible to measure the
expected eigenfrequency of 78·9 Hz (third antiresonance). The reason for this lies
in the fact that the plate was supported on edges against its own weight. To
eliminate the disturbing effects, the two-sided support conditions were not
employed. On account of the unfavourable mode shape at 78·9 Hz, the weight of
the plate was insufficient to ensure the appropriate supporting conditions, through
which it was not possible for the corresponding mode shape to develop.

4. APPLICATIONS IN EXPERIMENTAL STRUCTURAL ANALYSIS

The application of the results obtained from the antiresonance behaviour of
elastic structures is of importance in the following fields of experimental structural
analysis.

1. Experimental modal analysis. The user of experimental modal analysis must
pay attention to the fact that the antiresonance ranges should also be correctly
contained in the regenerated FRF curves, otherwise the identified modal model

Figure 10. Measured driving point FRFs for the plate. ——, FRF Ha
0, 0(v) for the original plate;

– – –, FRF H� a
0,0(v) for the modified plate; Dm0 =0·316 kg (−10 dB).
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Figure 11. (a) Eigenvalues for the plate in free–free boundary condition (measurement points 4,
11 and 19). ——, La

1 (v); – – –, La
2 (v); ----, La

3 (v). (b) Measured FRF Ha
1,1(v) for the plate supported

at points 4, 11 and 19.

may be erroneous in other boundary conditions (e.g., support at the excitation
points.

2. Updating finite element models. By using experiments, the eigenfrequencies
of a test structure can easily be measured for different ideal boundary conditions.
Since it is possible to virtually fix the structure to be tested at each point and in
each measurement direction (provided that the measurement of the driving point
FRF is practically possible), updating can be carried out step-by-step using the
separation of complicated ranges.

3. Identification. In the case of parameter identification, a complicated model
can be simplified by fixing substructures (see Figure 7). When changing the
boundary conditions for the test we may obtain more information concerning the
indirect identification of parameters.

4. Location of structural faults. Any modification of structures (faults) causes
shifts in the resonance frequencies as well as in the antiresonance frequencies. The
consideration of antiresonance frequencies provides more information and can be
a useful indicator for the location of structural faults. If the resonance frequencies



.   .392

of a structure change for a given excitation DOF at a response DOF, while the
antiresonance frequencies remain unchanged, then a modification of the structure
(structural fault) at this response DOF can be predicted.

5. SUMMARY AND CONCLUSIONS

In this paper, the significance of antiresonances in experimental structural
analysis has been discussed. Linear systems with light damping (mass stiffness
controlled systems) are assumed. The consideration of the relationship between
structural modification and resonance–antiresonance behaviour provides a simple
physical interpretation of the antiresonance frequencies. It is shown that for single
input reference systems the antiresonance frequencies of an arbitrary driving point
FRF are identical with the resonance frequencies of the system fixed at the
excitation point in the excitation direction. For multiple input reference systems,
fully analogous theorems can be derived if the driving point FRFs are replaced
by the eigenvalues of the corresponding FRF matrix. These eigenvalues exhibit a
similar resonance–antiresonance behaviour as the driving point FRFs for single
input reference systems.

From the presented properties of antiresonances, important conclusions can be
drawn for experimental structural analysis: from the FRF measurements of
structures supported arbitrarily, it is possible to determine the eigenfrequencies of
structures under ideal boundary conditions which are impossible to achieve in
laboratory tests. This leads to future applications in different fields of structural
analysis such as identification and location of structural faults. However, the
results presented above also indicate that in the modal parameter estimation
procedures particular attention should be paid to the fact that the regenerated
FRF curves describe adequately the antiresonance ranges too.

T 1

Comparison between the antiresonance frequencies of the eigenvalues for the plate
in free–free boundary conditions and the eigenfrequencies of the plate supported at

point 4, 11 and 19 (data in Hz).

No. Antiresonance frequencies Eigenfrequencies: Eigenfrequencies:
of eigenvalues of the measurement FEM

free–free plate supported plate supported plate

1 40·2 39·5 41·05
2 58·7 57·9 57·88
3 78·9 – 77·35
4 139·8 138·5 143·9
5 171·3 170·7 173·8
6 199·6 200·3 203·0
7 240·1 238·2 242·6
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Figure 12. Eigenvalues La
r (v) and Complex Mode Indicator Functions CMIFr for the plate in

free–free boundary condition (measurement points 4, 11 and 19). ——, La
1 (v), La

2 (v), La
3 (v) after

modal indentification; – – –, CMIF1, CMIF2, CMIF3 calculated from the measured FRF matrix.

Some problems encountered in practice are as follows.
In calculating the eigenvalues of complex FRF matrices, which are based on

measurements, numerical problems may occur in the range of antiresonances
because measurements will become noise contaiminated when the response signal
tends to zero. An additional difficulty arises if the resonances and antiresonances
are closely spaced. Small phase errors may lead to large distortions in the
antiresonance ranges. For these reasons, the direct calculation of the eigenvalues
of the FRF matrices is useful only for a small number of degrees of freedom. For
larger FRF matrices, it is necessary to perform a modal identification before
calculating the eigenvalues. In this case, when using modal analysis, particular
attention must be paid to the correct determination of the residual terms (out of
range modes) because these greatly influence the position of the antiresonances.
An appropriate solution of this problem seems to be a new approach for dynamic
residual compensation found in reference [7].

An alternative method for calculating the antiresonance frequencies from
measured FRF matrices without modal identification is presented by the Complex
Mode Indicator Function (CMIF). The CMIFs are defined as the eigenvalues
solved from the normal FRF matrix (HH(v) · H(v)) at each spectral line and are
expressed using singular value decomposition. For lightly damped systems the
CMIFs of the FRF matrix exhibit nearly the same resonance–antiresonance
behaviour as the eigenvalues themselves. The calculation of the CMIFs from FRF
matrices has proved to be a stable algorithm, moreover implemented as standard
software in modal analysis systems [8].

Figure 12 shows a comparison between the eigenvalues of the FRF matrix after
modal identification (see Figure 11) and the corresponding CMIFs. Obviously, the
curves of the CMIFs are very close to the eigenvalues. Only near the 200-Hz
frequency line does a difference of nearly 3 Hz occur. The previously existing
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conditions allow the conclusion that the CMIFs demonstrate the most correct value
of the antiresonance frequency. But a final evaluation will be possible only after
future research.
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